

LETTERS TO THE EDITOR

Managing IgG4-related disease – the Portuguese rheumatology cohort

Parente H¹, Carones A², Silva A³, Silva B⁴, Costa C⁵, Soares CD¹, Santos I⁶, Bernardes JM⁴, Silvério-António M³, Torres RP⁷, Teixeira F¹

Dear Editor,

IgG4-related disease (IgG4-RD) is an uncommon fibro-inflammatory pseudotumoral entity characterized by slowly progressive systemic manifestations. It affects mainly middle-aged and older men¹, involving various organs like the pancreas, salivary and lacrimal glands, retroperitoneal region, and vessels. Diagnosing IgG4-RD is challenging since it mimics malignancies, vasculitis and granulomatous disorders. The available diagnostic criteria² still lack validation, and the 2019 ACR/ EULAR criteria³ purpose classification only. Corticosteroid (CCT) treatment has shown positive outcomes⁴, although relapses are common⁵. Therefore, maintenance treatment with immunomodulatory drugs is often necessary.

To characterize the Portuguese population of IgG4-RD patients under Rheumatology care, we conducted a national multicenter observational study focused on patients with a clinical IgG4-RD diagnosis (62.5% met the 2019 ACR/EULAR classification criteria) followed-up in Rheumatology departments. Data collection occurred from 30/03/2022-20/12/2022.

This work was previously presented at EULAR congress 2023, as abstract number AB1507.

We included twenty-four patients with a mean current age of 59.95 years (standard deviation [SD]=13.35). The mean age at diagnosis was 56.09 years (SD=14.13), and the mean age at the onset of symptoms was 53.96 years (SD=14.19). Twelve (50%) patients were male. Table 1 depicts this cohort's characteristics. The most common overall manifestations involved salivary glands (37.5%), followed by orbits, lacrimal glands and aorta (25% each), and pancreas (20.8%). We documented single organ disease in six (25%) patients.

Accepted: 29/09/2023

Correspondence to: Hugo Parente E-mail: hugoparente12@gmail.com

An intra-ductal pancreato-biliary papillary mucinous neoplasm was documented. None of the patients had a tomographic "sausage pancreas", three (12.5%) patients had lung nodules, one (4.2%) had a bronchovascular pattern, one (4.2%) had a non-specific interstitial pneumonia pattern, and four (16.7%) had groundglass opacities. Histology regarding the most suspect, accessible, and replicable lesion revealed storiform fibrosis in four (16.7%) patients, lymphoplasmacytic infiltrates in twenty (83.3%) patients, and an IgG4/IgG ratio >40% in five (20.8%) patients. Five (20.8%) patients were biopsied after treatment initiation due to a high index of suspicion, and the others prior to this measure. All patients underwent PET scans at disease's peak activity revealing inflammation in ten (41.7%) cases. Blood analysis, during the span of disease, revealed peripheral eosinophilia in five (20.8%) patients; twelve (50%) had elevated erythrocyte sedimentation rate, sixteen (66.7%) had elevated C-reactive protein, sixteen (66.7%) had high levels of IgG4, two (8.3%) had high levels of IgG1 and one (4.2) had high levels of IgE. One death of unknown cause occurred in a patient of 65 years old. The initial therapy included oral CCT in seventeen (70.8%) cases, with a mean dosage of 21.17mg/day (SD=22.55) (maximum=80mg/day). Six (25%) patients received either CCT pulses, cyclophosphamide, or rituximab; the other were managed with mycophenolate mofetil (MMF) and methotrexate (MTX). Currently, one (4.2%) patient is undergoing CCT pulses due to lung and aortic disease; oral CCT has been slowly tapered, with only one patient fully stopping it; the remainder treatment lies on table 1. Seventeen (70.8%) patients responded well to the initial CCT, thirteen (54.2%) showed decreased IgG4 serum levels, eight (33.3%) normalized their IgG4 levels, and eight (33.3%) relapsed, requiring a medication switch/addition.

The Portuguese cohort showed diverse characteristics without a gender bias. We should, however, be aware that IgG4-RD patients might be scattered throughout a vast number of medical specialties, so these numbers and features might be just a fraction of the sum. Middle-aged and older individuals were predominantly affected, with orbital, vascular and glandular involvement being common, consistent with literature data⁶. The frequency of elevated IgG4 levels and eosinophilia were also concordant with previous stud-

¹ Rheumatology, Unidade Local de Saúde do Alto Minho

² Rheumatology, Centro Hospitalar e Universitário de Coimbra

³ Rheumatology, Centro Hospitalar Universitário Lisboa Norte

⁴ Rheumatology, Centro Hospitalar Universitário de São João

⁵ Rheumatology, Centro Hospitalar de Trás-Os-Montes e Alto Douro

⁶ Rheumatology, Centro Hospitalar Tondela - Viseu

⁷ Rheumatology, Centro Hospitalar de Lisboa Ocidental Submitted: 27/07/2023

TABLE I. Demographics and disease description of the participants

Demostratio	
Demographic data	12/24 (52.0)
Male sex, n/N (%)	12/24 (50.0)
Age at the beginning of symptoms, mean (SD)	53.96 (14.19)
Age at diagnosis, mean (SD)	56.09 (14.13)
Present age, mean (SD)	59.96 (13.05)
Deaths, n/N (%)	1/24 (4.2)
Lifestyle	
Smoking	
Previously, n/N (%)	8/24 (33.3)
Presently, n/N (%)	2/24 (8.3)
Clinical data	
Pancreatic involvement, n/N (%)	5/24 (20.8)
Autoimmune pancreatitis, n/N (%)	1/24 (4.2)
Type 2 diabetes mellitus, n/N (%)	4/24 (16.7)
Lung involvement, n/N (%)	3/24 (12.5)
Retroperitoneal involvement, n/N (%)	4/24 (16.7)
Renal obstruction, n/N (%)	1/24 (4.2)
Venous thrombosis, n/N (%)	1/24 (4.2)
Retroperitoneal fibrosis, n/N (%)	2/24 (8.3)
Renal involvement, n/N (%)	3/24 (12.5)
Tubulointerstitial nephritis, n/N (%)	2/24 (8.3)
Renal tubular acidosis, n/N (%)	1/24 (4.2)
Orbital involvement, n/N (%)	6/24 (25.0)
Dacryoadenitis, n/N (%)	3/24 (12.5)
Dacryocystitis, n/N (%)	1/24 (4.2)
Orbital pseudotumor, n/N (%)	2/24 (8.3)
Biliary ducts involvement, n/N (%)	4/24 (16.7)
Ductal thickening and fibrosis, n/N (%)	3/24 (12.5)
Sclerosing cholangitis, n/N (%)	1/24 (4.2)
Lacrimal glands involvement, n/N (%)	6/24 (25.0)
Bilateral, n/N (%)	4/24 (16.7)
Meninges involvement, n/N (%)	1/24 (4.2)
Aortic involvement, n/N (%)	6/24 (25.0)
Infrarenal, n/N (%)	3/24 (12.5)
Ascending aortitis, n/N (%)	1/24 (4.2)
Iliac arteries, n/N (%)	2/24 (8.3)
Other vascular involvement, n/N (%)	2/24 (8.3)
Brain aneurysm, n/N (%)	1/24 (4.2)
Pulmonary artery encapsulation by pseudotumor, n/N (%)	1/24 (4.2)
Salivary glands involvement, n/N (%)	9/24 (37.5)
Bilateral, n/N (%)	8/24 (33.3)
Thyroid involvement, n/N (%)	2/24 (8.3)
Autoimmune hepatitis, n/N (%)	0/24 (0)
Cosntrictive pericarditis, n/N (%)	0/24 (0)
Sclerosing mastitis, n/N (%)	0/24 (0)
Gastritis, n/N (%)	1/24 (4.2)
Gastrico, 1011 (10)	1/2 (1.2)

TABLE I. Continuation Clinical data 1/24 (4.2) Malignancy, n/N (%) Hidradenitis suppurativa, n/N (%) 1/24 (4.2) Lymphadenopathy, n/N (%) 1/24 (4.2) Polyserositis, n/N (%) 1/24 (4.2) Mediastinic pseudotumor, n/N (%) 2/24 (8.3) Epidural pseudotumor with spinal cord 1/24 (4.2) compression, n/N (%) Imaging Tomography - Sausage pancreas, n/N (%) 0/24 (0) 3/24 (12.5) Tomography – Lung nodules, n/N (%) Tomography - Lung bronchovascular pattern, 1/24 (4.2) n/N (%) Tomography – Lung interstitial pattern, n/N (%) 1/24 (4.2) Tomography - Lung groundglass opacities, n/N 4/24 (16.7) (%) PET – Inflammatory findings, n/N (%) 10/24 (41.7) *Storiform* fibrosis, n/N (%) 4/24 (16.7) Lymphoplasmacytic infiltrate, n/N (%) 20/24 (83.3) Phlebitis obliterans, n/N (%) 0/24 (0) IgG4/IgG ratio >40% in high magnification field, 5/24 (20.8) n/N (%) Blood analysis Positive rheumatoid factor, n/N (%) 0/24 (0) Positive anti-nuclear antibodies, n/N (%) 4/24 (16.7) Peripheral eosinophilia, n/N (%) 5/24 (20.8) Elevated C-Reactive Protein, n/N (%) 16/24 (66.7) Elevated erythrocyte sedimentation rate, 12/24 (50.0) n/N (%) 16/24 (66.7) Elevated serum IgG4 levels, n/N (%) Elevated serum IgG1 levels, n/N (%) 2/24 (8.3) Elevated serum IgE levels, n/N (%) 1/24 (4.2) Initial treatment Corticosteroids - pulses, n/N (%) 2/24 (8.3) Corticosteroids - oral, n/N (%) 17/24 (70.8) Dose in milligrams, mean (SD) 21.17 (22.55) Cyclophosphamide, n/N (%) 1/24 (4.2) Mycophenolate mofetil, n/N (%) 2/24 (8.3) 0/24(0)Azathioprine, n/N (%) Methotrexate, n/N (%) 2/24 (8.3) Leflunomide, n/N (%) 0/24 (0)

Hydroxychloroquine, n/N (%)

Intravenous immunoglobulins, n/N (%)

Tacrolimus, n/N (%)

Ciclosporin, n/N (%)

Rituximab, n/N (%)

TNFa-inhibitor, n/N (%)

Other - antibiotic, n/N (%)

0/24 (0) 0/24 (0)

0/24 (0)

0/24 (0)

3/24 (12.5)

0/24 (0)

1/24 (4.2)

ABLE I. Continuation	
Present treatment	
Corticosteroids - pulses, n/N (%)	1/24 (4.2)
Corticosteroids - oral, n/N (%)	16/24 (66.7)
Dose in milligrams, mean (SD)	4.67 (8.47)
Cyclophosphamide, n/N (%)	0/24 (0)
Mycophenolate mofetil, n/N (%)	2/24 (8.3)
Azathioprine, n/N (%)	1/24 (4.2)
Methotrexate, n/N (%)	1/24 (4.2)
Leflunomide, n/N (%)	0/24 (0)
Hydroxychloroquine, n/N (%)	1/24 (4.2)
Tacrolimus, n/N (%)	0/24 (0)
Ciclosporin, n/N (%)	0/24 (0)
Intravenous immunoglobulins, n/N (%)	0/24 (0)
Rituximab, n/N (%)	7/24 (29.2)
TNFa-inhibitor, n/N (%)	2/24 (8.3)
Other - surgery, n/N (%)	1/24 (4.2)
Result	
Corticosteroid response, n/N (%)	17/24 (70.8)
Decreased serum levels of IgG4, n/N (%)	13/24 (54.2)
Normalization of serum levels of IgG4, n/N (%)	8/24 (33.3)
D: standard deviation; PET: positron emission tomogra lobulin G; IgE: immunoglobulin E; TNF: tumour necr	1 7.0

ies⁷. Corticosteroid therapy effectively reduced IgG4 levels (with equivalent doses than those described in literature⁸) but had limitations (the recurrence rate is set at 46%⁹), demanding the use of alternative immunomodulators. Treatment choices varied based on the affected organs, with MTX initially having limited effectiveness and MMF demonstrating a favorable response. RTX was moderately utilized as an alternative treatment option, similarly to other studies¹⁰.

Our study has some limitations, inherent to its cross-sectional layout, but chiefly regarding the lack of information on: a) affected organ's activity/function (for instance, glomerular filtration rate or thyroid function); b) follow-up PET scans; c) current versus past organ involvement, with an unique description of the sum of the organic lesions; d) disease progression from single to multiple organ involvement. Nonetheless, it portrays a first picture of IgG4-RD patients receiving supervision from rheumatologists. Further research is necessary to enrich this outline.

REFERENCES

- Uchida K, Masamune A, Shimosegawa T, Okazaki K. Prevalence of IgG4-Related Disease in Japan Based on Nationwide Survey in 2009. Int J Rheumatol. 2012; 2012:358-371. https://doi.org/10.1155/2012/358371
- Hisanori Umehara and others, The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD, Modern Rheumatology 2021: 3; 529-533.

https://doi.org/10.1080/14397595.2020.1859710

- Wallace ZS, Naden RP, Chari S Members of the ACR/EULAR IgG4-RD Classification Criteria Working Group, et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Annals of the Rheumatic Diseases 2020;79:77-87. https://doi.org/10.1136/annrheumdis-2019-216561
- Abraham M, Khosroshahi A. Diagnostic and treatment workup for IgG4-related disease. Expert Rev Clin Immunol. 2017;13(9):867-875.
 - https://doi.org/10.1080/1744666X.2017.1354698
- Hart PA, Topazian MD, Witzig TE, Clain JE, Gleeson FC, Klebig RR, et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: the Mayo Clinic experience. Gut. 2013; 62(11):1607-15. https://doi.org/10.1136/gutjnl-2012-302886
- Kamisawa T Funata N Hayashi Y Eishi Y Koike M A new clinicopathological entity of IgG4-related autoimmune disease. Journal of Gastroenterology . 2003;38:982-984. https://doi.org/10.1007/s00535-003-1175-y
- Wallace ZS Deshpande V Mattoo H Mahajan VS Kulikova M -related disease: clinical and laboratory features in one hundred twenty-five patients. Arthritis Rheumatology. 2015;67:2466-2475. https://doi.org/10.1002/art.39205
- Karadeniz H, Vaglio A. IgG4-related disease: a contemporary review. Turk J Med Sci. 2020 Nov 3;50(SI-2):1616-1631. https://doi.org/10.3906/sag-2006-375
- Campochiaro C, Ramirez GA, Bozzolo EP, Lanzillotta M, Berti A et al. IgG4-related disease in Italy: clinical features and outcomes of a large cohort of patients. Scandi Journal of Rheumatology 2016; 45: 135-145. <u>https://doi.org/10.3109/03009742.2015.1055796</u>
- Witzig TE, Inwards DJ, Habermann TM, Dogan A, Kurtin PJ et al. Treatment of benign orbital pseudolymphomas with the monoclonal anti-CD20 antibody rituximab. Mayo Clinic Proceedings 2007; 82: 692-699. https://doi.org/10.1016/S0025-6196(11)61189-0